Metamath Proof Explorer


Theorem bnj133

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj133.1 φ x ψ
bnj133.2 χ ψ
Assertion bnj133 φ x χ

Proof

Step Hyp Ref Expression
1 bnj133.1 φ x ψ
2 bnj133.2 χ ψ
3 2 exbii x χ x ψ
4 1 3 bitr4i φ x χ