Metamath Proof Explorer


Theorem bnj1373

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1373.1 B = d | d A x d pred x A R d
bnj1373.2 Y = x f pred x A R
bnj1373.3 C = f | d B f Fn d x d f x = G Y
bnj1373.4 τ f C dom f = x trCl x A R
bnj1373.5 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
Assertion bnj1373 Could not format assertion : No typesetting found for |- ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj1373.1 B = d | d A x d pred x A R d
2 bnj1373.2 Y = x f pred x A R
3 bnj1373.3 C = f | d B f Fn d x d f x = G Y
4 bnj1373.4 τ f C dom f = x trCl x A R
5 bnj1373.5 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
6 1 bnj1309 f B x f B
7 3 6 bnj1307 f C x f C
8 7 bnj1351 f C dom f = y trCl y A R x f C dom f = y trCl y A R
9 8 nf5i x f C dom f = y trCl y A R
10 sneq x = y x = y
11 bnj1318 x = y trCl x A R = trCl y A R
12 10 11 uneq12d x = y x trCl x A R = y trCl y A R
13 12 eqeq2d x = y dom f = x trCl x A R dom f = y trCl y A R
14 13 anbi2d x = y f C dom f = x trCl x A R f C dom f = y trCl y A R
15 4 14 syl5bb x = y τ f C dom f = y trCl y A R
16 9 15 sbciegf y V [˙y / x]˙ τ f C dom f = y trCl y A R
17 16 elv [˙y / x]˙ τ f C dom f = y trCl y A R
18 5 17 bitri Could not format ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) : No typesetting found for |- ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) with typecode |-