Metamath Proof Explorer


Theorem bnj1379

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1379.1 φ f A Fun f
bnj1379.2 D = dom f dom g
bnj1379.3 ψ φ f A g A f D = g D
bnj1379.5 χ ψ x y A x z A
bnj1379.6 θ χ f A x y f
bnj1379.7 τ θ g A x z g
Assertion bnj1379 ψ Fun A

Proof

Step Hyp Ref Expression
1 bnj1379.1 φ f A Fun f
2 bnj1379.2 D = dom f dom g
3 bnj1379.3 ψ φ f A g A f D = g D
4 bnj1379.5 χ ψ x y A x z A
5 bnj1379.6 θ χ f A x y f
6 bnj1379.7 τ θ g A x z g
7 1 bnj1095 φ f φ
8 7 nf5i f φ
9 nfra1 f f A g A f D = g D
10 8 9 nfan f φ f A g A f D = g D
11 3 10 nfxfr f ψ
12 1 bnj946 φ f f A Fun f
13 12 biimpi φ f f A Fun f
14 13 19.21bi φ f A Fun f
15 3 14 bnj832 ψ f A Fun f
16 funrel Fun f Rel f
17 15 16 syl6 ψ f A Rel f
18 11 17 ralrimi ψ f A Rel f
19 reluni Rel A f A Rel f
20 18 19 sylibr ψ Rel A
21 eluni2 x y A f A x y f
22 21 biimpi x y A f A x y f
23 22 bnj1196 x y A f f A x y f
24 4 23 bnj836 χ f f A x y f
25 nfv f x y A
26 nfv f x z A
27 11 25 26 nf3an f ψ x y A x z A
28 4 27 nfxfr f χ
29 28 nf5ri χ f χ
30 24 5 29 bnj1345 χ f θ
31 4 simp3bi χ x z A
32 5 31 bnj835 θ x z A
33 eluni2 x z A g A x z g
34 33 biimpi x z A g A x z g
35 34 bnj1196 x z A g g A x z g
36 32 35 syl θ g g A x z g
37 nfv g φ
38 nfra2w g f A g A f D = g D
39 37 38 nfan g φ f A g A f D = g D
40 3 39 nfxfr g ψ
41 nfv g x y A
42 nfv g x z A
43 40 41 42 nf3an g ψ x y A x z A
44 4 43 nfxfr g χ
45 nfv g f A
46 nfv g x y f
47 44 45 46 nf3an g χ f A x y f
48 5 47 nfxfr g θ
49 48 nf5ri θ g θ
50 36 6 49 bnj1345 θ g τ
51 3 simprbi ψ f A g A f D = g D
52 4 51 bnj835 χ f A g A f D = g D
53 5 52 bnj835 θ f A g A f D = g D
54 6 53 bnj835 τ f A g A f D = g D
55 5 6 bnj1219 τ f A
56 54 55 bnj1294 τ g A f D = g D
57 6 simp2bi τ g A
58 56 57 bnj1294 τ f D = g D
59 58 fveq1d τ f D x = g D x
60 5 simp3bi θ x y f
61 6 60 bnj835 τ x y f
62 vex x V
63 vex y V
64 62 63 opeldm x y f x dom f
65 61 64 syl τ x dom f
66 vex z V
67 62 66 opeldm x z g x dom g
68 6 67 bnj837 τ x dom g
69 65 68 elind τ x dom f dom g
70 69 2 eleqtrrdi τ x D
71 70 fvresd τ f D x = f x
72 70 fvresd τ g D x = g x
73 59 71 72 3eqtr3d τ f x = g x
74 1 biimpi φ f A Fun f
75 3 74 bnj832 ψ f A Fun f
76 4 75 bnj835 χ f A Fun f
77 5 76 bnj835 θ f A Fun f
78 6 77 bnj835 τ f A Fun f
79 78 55 bnj1294 τ Fun f
80 funopfv Fun f x y f f x = y
81 79 61 80 sylc τ f x = y
82 funeq f = g Fun f Fun g
83 82 78 57 rspcdva τ Fun g
84 6 simp3bi τ x z g
85 funopfv Fun g x z g g x = z
86 83 84 85 sylc τ g x = z
87 73 81 86 3eqtr3d τ y = z
88 50 87 bnj593 θ g y = z
89 88 bnj937 θ y = z
90 30 89 bnj593 χ f y = z
91 90 bnj937 χ y = z
92 4 91 sylbir ψ x y A x z A y = z
93 92 3expib ψ x y A x z A y = z
94 93 alrimivv ψ y z x y A x z A y = z
95 94 alrimiv ψ x y z x y A x z A y = z
96 dffun4 Fun A Rel A x y z x y A x z A y = z
97 20 95 96 sylanbrc ψ Fun A