Metamath Proof Explorer


Theorem bnj1383

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1383.1 φ f A Fun f
bnj1383.2 D = dom f dom g
bnj1383.3 ψ φ f A g A f D = g D
Assertion bnj1383 ψ Fun A

Proof

Step Hyp Ref Expression
1 bnj1383.1 φ f A Fun f
2 bnj1383.2 D = dom f dom g
3 bnj1383.3 ψ φ f A g A f D = g D
4 biid ψ x y A x z A ψ x y A x z A
5 biid ψ x y A x z A f A x y f ψ x y A x z A f A x y f
6 biid ψ x y A x z A f A x y f g A x z g ψ x y A x z A f A x y f g A x z g
7 1 2 3 4 5 6 bnj1379 ψ Fun A