Metamath Proof Explorer


Theorem bnj1384

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1384.1 B = d | d A x d pred x A R d
bnj1384.2 Y = x f pred x A R
bnj1384.3 C = f | d B f Fn d x d f x = G Y
bnj1384.4 τ f C dom f = x trCl x A R
bnj1384.5 D = x A | ¬ f τ
bnj1384.6 ψ R FrSe A D
bnj1384.7 χ ψ x D y D ¬ y R x
bnj1384.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1384.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1384.10 P = H
Assertion bnj1384 R FrSe A Fun P

Proof

Step Hyp Ref Expression
1 bnj1384.1 B = d | d A x d pred x A R d
2 bnj1384.2 Y = x f pred x A R
3 bnj1384.3 C = f | d B f Fn d x d f x = G Y
4 bnj1384.4 τ f C dom f = x trCl x A R
5 bnj1384.5 D = x A | ¬ f τ
6 bnj1384.6 ψ R FrSe A D
7 bnj1384.7 χ ψ x D y D ¬ y R x
8 bnj1384.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1384.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1384.10 P = H
11 1 2 3 4 8 bnj1373 Could not format ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) : No typesetting found for |- ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) with typecode |-
12 1 2 3 4 5 6 7 8 9 10 11 bnj1371 f H Fun f
13 12 rgen f H Fun f
14 id R FrSe A R FrSe A
15 1 2 3 4 5 6 7 8 9 bnj1374 f H f C
16 nfab1 Could not format F/_ f { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- F/_ f { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
17 9 16 nfcxfr _ f H
18 17 nfcri f g H
19 nfab1 _ f f | d B f Fn d x d f x = G Y
20 3 19 nfcxfr _ f C
21 20 nfcri f g C
22 18 21 nfim f g H g C
23 eleq1w f = g f H g H
24 eleq1w f = g f C g C
25 23 24 imbi12d f = g f H f C g H g C
26 22 25 15 chvarfv g H g C
27 eqid dom f dom g = dom f dom g
28 1 2 3 27 bnj1326 R FrSe A f C g C f dom f dom g = g dom f dom g
29 14 15 26 28 syl3an R FrSe A f H g H f dom f dom g = g dom f dom g
30 29 3expib R FrSe A f H g H f dom f dom g = g dom f dom g
31 30 ralrimivv R FrSe A f H g H f dom f dom g = g dom f dom g
32 biid f H Fun f f H Fun f
33 biid f H Fun f f H g H f dom f dom g = g dom f dom g f H Fun f f H g H f dom f dom g = g dom f dom g
34 9 bnj1317 z H f z H
35 32 27 33 34 bnj1386 f H Fun f f H g H f dom f dom g = g dom f dom g Fun H
36 13 31 35 sylancr R FrSe A Fun H
37 10 funeqi Fun P Fun H
38 36 37 sylibr R FrSe A Fun P