Metamath Proof Explorer


Theorem bnj1385

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1385.1 φ f A Fun f
bnj1385.2 D = dom f dom g
bnj1385.3 ψ φ f A g A f D = g D
bnj1385.4 x A f x A
bnj1385.5 No typesetting found for |- ( ph' <-> A. h e. A Fun h ) with typecode |-
bnj1385.6 E = dom h dom g
bnj1385.7 No typesetting found for |- ( ps' <-> ( ph' /\ A. h e. A A. g e. A ( h |` E ) = ( g |` E ) ) ) with typecode |-
Assertion bnj1385 ψ Fun A

Proof

Step Hyp Ref Expression
1 bnj1385.1 φ f A Fun f
2 bnj1385.2 D = dom f dom g
3 bnj1385.3 ψ φ f A g A f D = g D
4 bnj1385.4 x A f x A
5 bnj1385.5 Could not format ( ph' <-> A. h e. A Fun h ) : No typesetting found for |- ( ph' <-> A. h e. A Fun h ) with typecode |-
6 bnj1385.6 E = dom h dom g
7 bnj1385.7 Could not format ( ps' <-> ( ph' /\ A. h e. A A. g e. A ( h |` E ) = ( g |` E ) ) ) : No typesetting found for |- ( ps' <-> ( ph' /\ A. h e. A A. g e. A ( h |` E ) = ( g |` E ) ) ) with typecode |-
8 nfv h f A Fun f
9 4 nfcii _ f A
10 9 nfcri f h A
11 nfv f Fun h
12 10 11 nfim f h A Fun h
13 eleq1w f = h f A h A
14 funeq f = h Fun f Fun h
15 13 14 imbi12d f = h f A Fun f h A Fun h
16 8 12 15 cbvalv1 f f A Fun f h h A Fun h
17 df-ral f A Fun f f f A Fun f
18 df-ral h A Fun h h h A Fun h
19 16 17 18 3bitr4i f A Fun f h A Fun h
20 19 1 5 3bitr4i Could not format ( ph <-> ph' ) : No typesetting found for |- ( ph <-> ph' ) with typecode |-
21 nfv h f A g A f D = g D
22 nfv f h E = g E
23 9 22 nfralw f g A h E = g E
24 10 23 nfim f h A g A h E = g E
25 dmeq f = h dom f = dom h
26 25 ineq1d f = h dom f dom g = dom h dom g
27 26 2 6 3eqtr4g f = h D = E
28 27 reseq2d f = h f D = f E
29 reseq1 f = h f E = h E
30 28 29 eqtrd f = h f D = h E
31 27 reseq2d f = h g D = g E
32 30 31 eqeq12d f = h f D = g D h E = g E
33 32 ralbidv f = h g A f D = g D g A h E = g E
34 13 33 imbi12d f = h f A g A f D = g D h A g A h E = g E
35 21 24 34 cbvalv1 f f A g A f D = g D h h A g A h E = g E
36 df-ral f A g A f D = g D f f A g A f D = g D
37 df-ral h A g A h E = g E h h A g A h E = g E
38 35 36 37 3bitr4i f A g A f D = g D h A g A h E = g E
39 20 38 anbi12i Could not format ( ( ph /\ A. f e. A A. g e. A ( f |` D ) = ( g |` D ) ) <-> ( ph' /\ A. h e. A A. g e. A ( h |` E ) = ( g |` E ) ) ) : No typesetting found for |- ( ( ph /\ A. f e. A A. g e. A ( f |` D ) = ( g |` D ) ) <-> ( ph' /\ A. h e. A A. g e. A ( h |` E ) = ( g |` E ) ) ) with typecode |-
40 39 3 7 3bitr4i Could not format ( ps <-> ps' ) : No typesetting found for |- ( ps <-> ps' ) with typecode |-
41 5 6 7 bnj1383 Could not format ( ps' -> Fun U. A ) : No typesetting found for |- ( ps' -> Fun U. A ) with typecode |-
42 40 41 sylbi ψ Fun A