Metamath Proof Explorer


Theorem bnj1388

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1388.1 B = d | d A x d pred x A R d
bnj1388.2 Y = x f pred x A R
bnj1388.3 C = f | d B f Fn d x d f x = G Y
bnj1388.4 τ f C dom f = x trCl x A R
bnj1388.5 D = x A | ¬ f τ
bnj1388.6 ψ R FrSe A D
bnj1388.7 χ ψ x D y D ¬ y R x
bnj1388.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
Assertion bnj1388 Could not format assertion : No typesetting found for |- ( ch -> A. y e. _pred ( x , A , R ) E. f ta' ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj1388.1 B = d | d A x d pred x A R d
2 bnj1388.2 Y = x f pred x A R
3 bnj1388.3 C = f | d B f Fn d x d f x = G Y
4 bnj1388.4 τ f C dom f = x trCl x A R
5 bnj1388.5 D = x A | ¬ f τ
6 bnj1388.6 ψ R FrSe A D
7 bnj1388.7 χ ψ x D y D ¬ y R x
8 bnj1388.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 nfv y ψ
10 nfv y x D
11 nfra1 y y D ¬ y R x
12 9 10 11 nf3an y ψ x D y D ¬ y R x
13 7 12 nfxfr y χ
14 bnj1152 y pred x A R y A y R x
15 14 simplbi y pred x A R y A
16 15 adantl χ y pred x A R y A
17 14 biimpi y pred x A R y A y R x
18 17 adantl χ y pred x A R y A y R x
19 18 simprd χ y pred x A R y R x
20 7 simp3bi χ y D ¬ y R x
21 20 adantr χ y pred x A R y D ¬ y R x
22 df-ral y D ¬ y R x y y D ¬ y R x
23 con2b y D ¬ y R x y R x ¬ y D
24 23 albii y y D ¬ y R x y y R x ¬ y D
25 22 24 bitri y D ¬ y R x y y R x ¬ y D
26 sp y y R x ¬ y D y R x ¬ y D
27 26 impcom y R x y y R x ¬ y D ¬ y D
28 25 27 sylan2b y R x y D ¬ y R x ¬ y D
29 19 21 28 syl2anc χ y pred x A R ¬ y D
30 5 eleq2i y D y x A | ¬ f τ
31 nfcv _ x y
32 nfcv _ x A
33 nfsbc1v x [˙y / x]˙ τ
34 8 33 nfxfr Could not format F/ x ta' : No typesetting found for |- F/ x ta' with typecode |-
35 34 nfex Could not format F/ x E. f ta' : No typesetting found for |- F/ x E. f ta' with typecode |-
36 35 nfn Could not format F/ x -. E. f ta' : No typesetting found for |- F/ x -. E. f ta' with typecode |-
37 sbceq1a x = y τ [˙y / x]˙ τ
38 37 8 bitr4di Could not format ( x = y -> ( ta <-> ta' ) ) : No typesetting found for |- ( x = y -> ( ta <-> ta' ) ) with typecode |-
39 38 exbidv Could not format ( x = y -> ( E. f ta <-> E. f ta' ) ) : No typesetting found for |- ( x = y -> ( E. f ta <-> E. f ta' ) ) with typecode |-
40 39 notbid Could not format ( x = y -> ( -. E. f ta <-> -. E. f ta' ) ) : No typesetting found for |- ( x = y -> ( -. E. f ta <-> -. E. f ta' ) ) with typecode |-
41 31 32 36 40 elrabf Could not format ( y e. { x e. A | -. E. f ta } <-> ( y e. A /\ -. E. f ta' ) ) : No typesetting found for |- ( y e. { x e. A | -. E. f ta } <-> ( y e. A /\ -. E. f ta' ) ) with typecode |-
42 30 41 bitri Could not format ( y e. D <-> ( y e. A /\ -. E. f ta' ) ) : No typesetting found for |- ( y e. D <-> ( y e. A /\ -. E. f ta' ) ) with typecode |-
43 29 42 sylnib Could not format ( ( ch /\ y e. _pred ( x , A , R ) ) -> -. ( y e. A /\ -. E. f ta' ) ) : No typesetting found for |- ( ( ch /\ y e. _pred ( x , A , R ) ) -> -. ( y e. A /\ -. E. f ta' ) ) with typecode |-
44 iman Could not format ( ( y e. A -> E. f ta' ) <-> -. ( y e. A /\ -. E. f ta' ) ) : No typesetting found for |- ( ( y e. A -> E. f ta' ) <-> -. ( y e. A /\ -. E. f ta' ) ) with typecode |-
45 43 44 sylibr Could not format ( ( ch /\ y e. _pred ( x , A , R ) ) -> ( y e. A -> E. f ta' ) ) : No typesetting found for |- ( ( ch /\ y e. _pred ( x , A , R ) ) -> ( y e. A -> E. f ta' ) ) with typecode |-
46 16 45 mpd Could not format ( ( ch /\ y e. _pred ( x , A , R ) ) -> E. f ta' ) : No typesetting found for |- ( ( ch /\ y e. _pred ( x , A , R ) ) -> E. f ta' ) with typecode |-
47 46 ex Could not format ( ch -> ( y e. _pred ( x , A , R ) -> E. f ta' ) ) : No typesetting found for |- ( ch -> ( y e. _pred ( x , A , R ) -> E. f ta' ) ) with typecode |-
48 13 47 ralrimi Could not format ( ch -> A. y e. _pred ( x , A , R ) E. f ta' ) : No typesetting found for |- ( ch -> A. y e. _pred ( x , A , R ) E. f ta' ) with typecode |-