Metamath Proof Explorer


Theorem bnj1397

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1397.1 φ x ψ
bnj1397.2 ψ x ψ
Assertion bnj1397 φ ψ

Proof

Step Hyp Ref Expression
1 bnj1397.1 φ x ψ
2 bnj1397.2 ψ x ψ
3 2 19.9h x ψ ψ
4 1 3 sylib φ ψ