Metamath Proof Explorer


Theorem bnj1400

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1400.1 y A x y A
Assertion bnj1400 dom A = x A dom x

Proof

Step Hyp Ref Expression
1 bnj1400.1 y A x y A
2 dmuni dom A = z A dom z
3 df-iun x A dom x = y | x A y dom x
4 df-iun z A dom z = y | z A y dom z
5 1 nfcii _ x A
6 nfcv _ z A
7 nfv z y dom x
8 nfv x y dom z
9 dmeq x = z dom x = dom z
10 9 eleq2d x = z y dom x y dom z
11 5 6 7 8 10 cbvrexfw x A y dom x z A y dom z
12 11 abbii y | x A y dom x = y | z A y dom z
13 4 12 eqtr4i z A dom z = y | x A y dom x
14 3 13 eqtr4i x A dom x = z A dom z
15 2 14 eqtr4i dom A = x A dom x