Metamath Proof Explorer


Theorem bnj1400

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1400.1 yAxyA
Assertion bnj1400 domA=xAdomx

Proof

Step Hyp Ref Expression
1 bnj1400.1 yAxyA
2 dmuni domA=zAdomz
3 df-iun xAdomx=y|xAydomx
4 df-iun zAdomz=y|zAydomz
5 1 nfcii _xA
6 nfcv _zA
7 nfv zydomx
8 nfv xydomz
9 dmeq x=zdomx=domz
10 9 eleq2d x=zydomxydomz
11 5 6 7 8 10 cbvrexfw xAydomxzAydomz
12 11 abbii y|xAydomx=y|zAydomz
13 4 12 eqtr4i zAdomz=y|xAydomx
14 3 13 eqtr4i xAdomx=zAdomz
15 2 14 eqtr4i domA=xAdomx