Metamath Proof Explorer


Theorem bnj1405

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1405.1 φ X y A B
Assertion bnj1405 φ y A X B

Proof

Step Hyp Ref Expression
1 bnj1405.1 φ X y A B
2 eliun X y A B y A X B
3 1 2 sylib φ y A X B