Metamath Proof Explorer


Theorem bnj1414

Description: Property of _trCl . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1414.1 B = pred X A R y pred X A R trCl y A R
Assertion bnj1414 R FrSe A X A trCl X A R = B

Proof

Step Hyp Ref Expression
1 bnj1414.1 B = pred X A R y pred X A R trCl y A R
2 eqid pred X A R y trCl X A R trCl y A R = pred X A R y trCl X A R trCl y A R
3 biid R FrSe A X A R FrSe A X A
4 biid B V TrFo B A R pred X A R B B V TrFo B A R pred X A R B
5 1 2 3 4 bnj1408 R FrSe A X A trCl X A R = B