Metamath Proof Explorer


Theorem bnj1415

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1415.1 B = d | d A x d pred x A R d
bnj1415.2 Y = x f pred x A R
bnj1415.3 C = f | d B f Fn d x d f x = G Y
bnj1415.4 τ f C dom f = x trCl x A R
bnj1415.5 D = x A | ¬ f τ
bnj1415.6 ψ R FrSe A D
bnj1415.7 χ ψ x D y D ¬ y R x
bnj1415.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1415.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1415.10 P = H
Assertion bnj1415 χ dom P = trCl x A R

Proof

Step Hyp Ref Expression
1 bnj1415.1 B = d | d A x d pred x A R d
2 bnj1415.2 Y = x f pred x A R
3 bnj1415.3 C = f | d B f Fn d x d f x = G Y
4 bnj1415.4 τ f C dom f = x trCl x A R
5 bnj1415.5 D = x A | ¬ f τ
6 bnj1415.6 ψ R FrSe A D
7 bnj1415.7 χ ψ x D y D ¬ y R x
8 bnj1415.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1415.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1415.10 P = H
11 6 simplbi ψ R FrSe A
12 7 11 bnj835 χ R FrSe A
13 5 7 bnj1212 χ x A
14 eqid pred x A R y pred x A R trCl y A R = pred x A R y pred x A R trCl y A R
15 14 bnj1414 R FrSe A x A trCl x A R = pred x A R y pred x A R trCl y A R
16 12 13 15 syl2anc χ trCl x A R = pred x A R y pred x A R trCl y A R
17 iunun y pred x A R y trCl y A R = y pred x A R y y pred x A R trCl y A R
18 iunid y pred x A R y = pred x A R
19 18 uneq1i y pred x A R y y pred x A R trCl y A R = pred x A R y pred x A R trCl y A R
20 17 19 eqtri y pred x A R y trCl y A R = pred x A R y pred x A R trCl y A R
21 biid χ z y pred x A R y trCl y A R χ z y pred x A R y trCl y A R
22 biid χ z y pred x A R y trCl y A R y pred x A R z y trCl y A R χ z y pred x A R y trCl y A R y pred x A R z y trCl y A R
23 1 2 3 4 5 6 7 8 9 10 21 22 bnj1398 χ y pred x A R y trCl y A R = dom P
24 20 23 eqtr3id χ pred x A R y pred x A R trCl y A R = dom P
25 16 24 eqtr2d χ dom P = trCl x A R