Metamath Proof Explorer


Theorem bnj1416

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1416.1 B = d | d A x d pred x A R d
bnj1416.2 Y = x f pred x A R
bnj1416.3 C = f | d B f Fn d x d f x = G Y
bnj1416.4 τ f C dom f = x trCl x A R
bnj1416.5 D = x A | ¬ f τ
bnj1416.6 ψ R FrSe A D
bnj1416.7 χ ψ x D y D ¬ y R x
bnj1416.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1416.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1416.10 P = H
bnj1416.11 Z = x P pred x A R
bnj1416.12 Q = P x G Z
bnj1416.28 χ dom P = trCl x A R
Assertion bnj1416 χ dom Q = x trCl x A R

Proof

Step Hyp Ref Expression
1 bnj1416.1 B = d | d A x d pred x A R d
2 bnj1416.2 Y = x f pred x A R
3 bnj1416.3 C = f | d B f Fn d x d f x = G Y
4 bnj1416.4 τ f C dom f = x trCl x A R
5 bnj1416.5 D = x A | ¬ f τ
6 bnj1416.6 ψ R FrSe A D
7 bnj1416.7 χ ψ x D y D ¬ y R x
8 bnj1416.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1416.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1416.10 P = H
11 bnj1416.11 Z = x P pred x A R
12 bnj1416.12 Q = P x G Z
13 bnj1416.28 χ dom P = trCl x A R
14 12 dmeqi dom Q = dom P x G Z
15 dmun dom P x G Z = dom P dom x G Z
16 fvex G Z V
17 16 dmsnop dom x G Z = x
18 17 uneq2i dom P dom x G Z = dom P x
19 14 15 18 3eqtri dom Q = dom P x
20 13 uneq1d χ dom P x = trCl x A R x
21 uncom trCl x A R x = x trCl x A R
22 20 21 eqtrdi χ dom P x = x trCl x A R
23 19 22 syl5eq χ dom Q = x trCl x A R