Metamath Proof Explorer


Theorem bnj1421

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1421.1 B = d | d A x d pred x A R d
bnj1421.2 Y = x f pred x A R
bnj1421.3 C = f | d B f Fn d x d f x = G Y
bnj1421.4 τ f C dom f = x trCl x A R
bnj1421.5 D = x A | ¬ f τ
bnj1421.6 ψ R FrSe A D
bnj1421.7 χ ψ x D y D ¬ y R x
bnj1421.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1421.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1421.10 P = H
bnj1421.11 Z = x P pred x A R
bnj1421.12 Q = P x G Z
bnj1421.13 χ Fun P
bnj1421.14 χ dom Q = x trCl x A R
bnj1421.15 χ dom P = trCl x A R
Assertion bnj1421 χ Fun Q

Proof

Step Hyp Ref Expression
1 bnj1421.1 B = d | d A x d pred x A R d
2 bnj1421.2 Y = x f pred x A R
3 bnj1421.3 C = f | d B f Fn d x d f x = G Y
4 bnj1421.4 τ f C dom f = x trCl x A R
5 bnj1421.5 D = x A | ¬ f τ
6 bnj1421.6 ψ R FrSe A D
7 bnj1421.7 χ ψ x D y D ¬ y R x
8 bnj1421.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1421.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1421.10 P = H
11 bnj1421.11 Z = x P pred x A R
12 bnj1421.12 Q = P x G Z
13 bnj1421.13 χ Fun P
14 bnj1421.14 χ dom Q = x trCl x A R
15 bnj1421.15 χ dom P = trCl x A R
16 vex x V
17 fvex G Z V
18 16 17 funsn Fun x G Z
19 13 18 jctir χ Fun P Fun x G Z
20 17 dmsnop dom x G Z = x
21 20 a1i χ dom x G Z = x
22 15 21 ineq12d χ dom P dom x G Z = trCl x A R x
23 6 simplbi ψ R FrSe A
24 7 23 bnj835 χ R FrSe A
25 biid R FrSe A R FrSe A
26 biid ¬ x trCl x A R ¬ x trCl x A R
27 biid z A z R x [˙z / x]˙ ¬ x trCl x A R z A z R x [˙z / x]˙ ¬ x trCl x A R
28 biid R FrSe A x A z A z R x [˙z / x]˙ ¬ x trCl x A R R FrSe A x A z A z R x [˙z / x]˙ ¬ x trCl x A R
29 eqid pred x A R z pred x A R trCl z A R = pred x A R z pred x A R trCl z A R
30 25 26 27 28 29 bnj1417 R FrSe A x A ¬ x trCl x A R
31 disjsn trCl x A R x = ¬ x trCl x A R
32 31 ralbii x A trCl x A R x = x A ¬ x trCl x A R
33 30 32 sylibr R FrSe A x A trCl x A R x =
34 24 33 syl χ x A trCl x A R x =
35 5 7 bnj1212 χ x A
36 34 35 bnj1294 χ trCl x A R x =
37 22 36 eqtrd χ dom P dom x G Z =
38 funun Fun P Fun x G Z dom P dom x G Z = Fun P x G Z
39 19 37 38 syl2anc χ Fun P x G Z
40 12 funeqi Fun Q Fun P x G Z
41 39 40 sylibr χ Fun Q