Metamath Proof Explorer


Theorem bnj1423

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1423.1 B = d | d A x d pred x A R d
bnj1423.2 Y = x f pred x A R
bnj1423.3 C = f | d B f Fn d x d f x = G Y
bnj1423.4 τ f C dom f = x trCl x A R
bnj1423.5 D = x A | ¬ f τ
bnj1423.6 ψ R FrSe A D
bnj1423.7 χ ψ x D y D ¬ y R x
bnj1423.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1423.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1423.10 P = H
bnj1423.11 Z = x P pred x A R
bnj1423.12 Q = P x G Z
bnj1423.13 W = z Q pred z A R
bnj1423.14 E = x trCl x A R
bnj1423.15 χ P Fn trCl x A R
bnj1423.16 χ Q Fn x trCl x A R
Assertion bnj1423 χ z E Q z = G W

Proof

Step Hyp Ref Expression
1 bnj1423.1 B = d | d A x d pred x A R d
2 bnj1423.2 Y = x f pred x A R
3 bnj1423.3 C = f | d B f Fn d x d f x = G Y
4 bnj1423.4 τ f C dom f = x trCl x A R
5 bnj1423.5 D = x A | ¬ f τ
6 bnj1423.6 ψ R FrSe A D
7 bnj1423.7 χ ψ x D y D ¬ y R x
8 bnj1423.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1423.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1423.10 P = H
11 bnj1423.11 Z = x P pred x A R
12 bnj1423.12 Q = P x G Z
13 bnj1423.13 W = z Q pred z A R
14 bnj1423.14 E = x trCl x A R
15 bnj1423.15 χ P Fn trCl x A R
16 bnj1423.16 χ Q Fn x trCl x A R
17 biid χ z E χ z E
18 biid χ z E z x χ z E z x
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 bnj1442 χ z E z x Q z = G W
20 biid χ z E z trCl x A R χ z E z trCl x A R
21 biid χ z E z trCl x A R f H z dom f χ z E z trCl x A R f H z dom f
22 biid χ z E z trCl x A R f H z dom f y pred x A R f C dom f = y trCl y A R χ z E z trCl x A R f H z dom f y pred x A R f C dom f = y trCl y A R
23 biid χ z E z trCl x A R f H z dom f y pred x A R f C dom f = y trCl y A R d B f Fn d x d f x = G Y χ z E z trCl x A R f H z dom f y pred x A R f C dom f = y trCl y A R d B f Fn d x d f x = G Y
24 eqid z f pred z A R = z f pred z A R
25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 bnj1450 χ z E z trCl x A R Q z = G W
26 14 bnj1424 z E z x z trCl x A R
27 26 adantl χ z E z x z trCl x A R
28 19 25 27 mpjaodan χ z E Q z = G W
29 28 ralrimiva χ z E Q z = G W