Metamath Proof Explorer


Theorem bnj1441

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) Add disjoint variable condition to avoid ax-13 . See bnj1441g for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1441.1 x A y x A
bnj1441.2 φ y φ
Assertion bnj1441 z x A | φ y z x A | φ

Proof

Step Hyp Ref Expression
1 bnj1441.1 x A y x A
2 bnj1441.2 φ y φ
3 df-rab x A | φ = x | x A φ
4 1 2 hban x A φ y x A φ
5 4 hbab z x | x A φ y z x | x A φ
6 3 5 hbxfreq z x A | φ y z x A | φ