Metamath Proof Explorer


Theorem bnj1441g

Description: First-order logic and set theory. See bnj1441 for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1441g.1 x A y x A
bnj1441g.2 φ y φ
Assertion bnj1441g z x A | φ y z x A | φ

Proof

Step Hyp Ref Expression
1 bnj1441g.1 x A y x A
2 bnj1441g.2 φ y φ
3 df-rab x A | φ = x | x A φ
4 1 2 hban x A φ y x A φ
5 4 hbabg z x | x A φ y z x | x A φ
6 3 5 hbxfreq z x A | φ y z x A | φ