Metamath Proof Explorer


Theorem bnj1444

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1444.1 B = d | d A x d pred x A R d
bnj1444.2 Y = x f pred x A R
bnj1444.3 C = f | d B f Fn d x d f x = G Y
bnj1444.4 τ f C dom f = x trCl x A R
bnj1444.5 D = x A | ¬ f τ
bnj1444.6 ψ R FrSe A D
bnj1444.7 χ ψ x D y D ¬ y R x
bnj1444.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1444.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1444.10 P = H
bnj1444.11 Z = x P pred x A R
bnj1444.12 Q = P x G Z
bnj1444.13 W = z Q pred z A R
bnj1444.14 E = x trCl x A R
bnj1444.15 χ P Fn trCl x A R
bnj1444.16 χ Q Fn x trCl x A R
bnj1444.17 θ χ z E
bnj1444.18 η θ z x
bnj1444.19 ζ θ z trCl x A R
bnj1444.20 ρ ζ f H z dom f
Assertion bnj1444 ρ y ρ

Proof

Step Hyp Ref Expression
1 bnj1444.1 B = d | d A x d pred x A R d
2 bnj1444.2 Y = x f pred x A R
3 bnj1444.3 C = f | d B f Fn d x d f x = G Y
4 bnj1444.4 τ f C dom f = x trCl x A R
5 bnj1444.5 D = x A | ¬ f τ
6 bnj1444.6 ψ R FrSe A D
7 bnj1444.7 χ ψ x D y D ¬ y R x
8 bnj1444.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1444.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1444.10 P = H
11 bnj1444.11 Z = x P pred x A R
12 bnj1444.12 Q = P x G Z
13 bnj1444.13 W = z Q pred z A R
14 bnj1444.14 E = x trCl x A R
15 bnj1444.15 χ P Fn trCl x A R
16 bnj1444.16 χ Q Fn x trCl x A R
17 bnj1444.17 θ χ z E
18 bnj1444.18 η θ z x
19 bnj1444.19 ζ θ z trCl x A R
20 bnj1444.20 ρ ζ f H z dom f
21 nfv y ψ
22 nfv y x D
23 nfra1 y y D ¬ y R x
24 21 22 23 nf3an y ψ x D y D ¬ y R x
25 7 24 nfxfr y χ
26 nfv y z E
27 25 26 nfan y χ z E
28 17 27 nfxfr y θ
29 nfv y z trCl x A R
30 28 29 nfan y θ z trCl x A R
31 19 30 nfxfr y ζ
32 nfre1 Could not format F/ y E. y e. _pred ( x , A , R ) ta' : No typesetting found for |- F/ y E. y e. _pred ( x , A , R ) ta' with typecode |-
33 32 nfab Could not format F/_ y { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- F/_ y { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
34 9 33 nfcxfr _ y H
35 34 nfcri y f H
36 nfv y z dom f
37 31 35 36 nf3an y ζ f H z dom f
38 20 37 nfxfr y ρ
39 38 nf5ri ρ y ρ