Metamath Proof Explorer


Theorem bnj1444

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1444.1 B=d|dAxdpredxARd
bnj1444.2 Y=xfpredxAR
bnj1444.3 C=f|dBfFndxdfx=GY
bnj1444.4 τfCdomf=xtrClxAR
bnj1444.5 D=xA|¬fτ
bnj1444.6 ψRFrSeAD
bnj1444.7 χψxDyD¬yRx
bnj1444.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1444.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1444.10 P=H
bnj1444.11 Z=xPpredxAR
bnj1444.12 Q=PxGZ
bnj1444.13 W=zQpredzAR
bnj1444.14 E=xtrClxAR
bnj1444.15 χPFntrClxAR
bnj1444.16 χQFnxtrClxAR
bnj1444.17 θχzE
bnj1444.18 ηθzx
bnj1444.19 ζθztrClxAR
bnj1444.20 ρζfHzdomf
Assertion bnj1444 ρyρ

Proof

Step Hyp Ref Expression
1 bnj1444.1 B=d|dAxdpredxARd
2 bnj1444.2 Y=xfpredxAR
3 bnj1444.3 C=f|dBfFndxdfx=GY
4 bnj1444.4 τfCdomf=xtrClxAR
5 bnj1444.5 D=xA|¬fτ
6 bnj1444.6 ψRFrSeAD
7 bnj1444.7 χψxDyD¬yRx
8 bnj1444.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1444.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1444.10 P=H
11 bnj1444.11 Z=xPpredxAR
12 bnj1444.12 Q=PxGZ
13 bnj1444.13 W=zQpredzAR
14 bnj1444.14 E=xtrClxAR
15 bnj1444.15 χPFntrClxAR
16 bnj1444.16 χQFnxtrClxAR
17 bnj1444.17 θχzE
18 bnj1444.18 ηθzx
19 bnj1444.19 ζθztrClxAR
20 bnj1444.20 ρζfHzdomf
21 nfv yψ
22 nfv yxD
23 nfra1 yyD¬yRx
24 21 22 23 nf3an yψxDyD¬yRx
25 7 24 nfxfr yχ
26 nfv yzE
27 25 26 nfan yχzE
28 17 27 nfxfr yθ
29 nfv yztrClxAR
30 28 29 nfan yθztrClxAR
31 19 30 nfxfr yζ
32 nfre1 Could not format F/ y E. y e. _pred ( x , A , R ) ta' : No typesetting found for |- F/ y E. y e. _pred ( x , A , R ) ta' with typecode |-
33 32 nfab Could not format F/_ y { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- F/_ y { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
34 9 33 nfcxfr _yH
35 34 nfcri yfH
36 nfv yzdomf
37 31 35 36 nf3an yζfHzdomf
38 20 37 nfxfr yρ
39 38 nf5ri ρyρ