Metamath Proof Explorer


Theorem bnj1445

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1445.1 B = d | d A x d pred x A R d
bnj1445.2 Y = x f pred x A R
bnj1445.3 C = f | d B f Fn d x d f x = G Y
bnj1445.4 τ f C dom f = x trCl x A R
bnj1445.5 D = x A | ¬ f τ
bnj1445.6 ψ R FrSe A D
bnj1445.7 χ ψ x D y D ¬ y R x
bnj1445.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1445.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1445.10 P = H
bnj1445.11 Z = x P pred x A R
bnj1445.12 Q = P x G Z
bnj1445.13 W = z Q pred z A R
bnj1445.14 E = x trCl x A R
bnj1445.15 χ P Fn trCl x A R
bnj1445.16 χ Q Fn x trCl x A R
bnj1445.17 θ χ z E
bnj1445.18 η θ z x
bnj1445.19 ζ θ z trCl x A R
bnj1445.20 ρ ζ f H z dom f
bnj1445.21 σ ρ y pred x A R f C dom f = y trCl y A R
bnj1445.22 φ σ d B f Fn d x d f x = G Y
bnj1445.23 X = z f pred z A R
Assertion bnj1445 σ d σ

Proof

Step Hyp Ref Expression
1 bnj1445.1 B = d | d A x d pred x A R d
2 bnj1445.2 Y = x f pred x A R
3 bnj1445.3 C = f | d B f Fn d x d f x = G Y
4 bnj1445.4 τ f C dom f = x trCl x A R
5 bnj1445.5 D = x A | ¬ f τ
6 bnj1445.6 ψ R FrSe A D
7 bnj1445.7 χ ψ x D y D ¬ y R x
8 bnj1445.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1445.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1445.10 P = H
11 bnj1445.11 Z = x P pred x A R
12 bnj1445.12 Q = P x G Z
13 bnj1445.13 W = z Q pred z A R
14 bnj1445.14 E = x trCl x A R
15 bnj1445.15 χ P Fn trCl x A R
16 bnj1445.16 χ Q Fn x trCl x A R
17 bnj1445.17 θ χ z E
18 bnj1445.18 η θ z x
19 bnj1445.19 ζ θ z trCl x A R
20 bnj1445.20 ρ ζ f H z dom f
21 bnj1445.21 σ ρ y pred x A R f C dom f = y trCl y A R
22 bnj1445.22 φ σ d B f Fn d x d f x = G Y
23 bnj1445.23 X = z f pred z A R
24 nfv d R FrSe A
25 nfre1 d d B f Fn d x d f x = G Y
26 25 nfab _ d f | d B f Fn d x d f x = G Y
27 3 26 nfcxfr _ d C
28 27 nfcri d f C
29 nfv d dom f = x trCl x A R
30 28 29 nfan d f C dom f = x trCl x A R
31 4 30 nfxfr d τ
32 31 nfex d f τ
33 32 nfn d ¬ f τ
34 nfcv _ d A
35 33 34 nfrabw _ d x A | ¬ f τ
36 5 35 nfcxfr _ d D
37 nfcv _ d
38 36 37 nfne d D
39 24 38 nfan d R FrSe A D
40 6 39 nfxfr d ψ
41 36 nfcri d x D
42 nfv d ¬ y R x
43 36 42 nfralw d y D ¬ y R x
44 40 41 43 nf3an d ψ x D y D ¬ y R x
45 7 44 nfxfr d χ
46 45 nf5ri χ d χ
47 46 bnj1351 χ z E d χ z E
48 47 nf5i d χ z E
49 17 48 nfxfr d θ
50 nfv d z trCl x A R
51 49 50 nfan d θ z trCl x A R
52 19 51 nfxfr d ζ
53 nfcv _ d pred x A R
54 nfcv _ d y
55 54 31 nfsbcw d [˙y / x]˙ τ
56 8 55 nfxfr Could not format F/ d ta' : No typesetting found for |- F/ d ta' with typecode |-
57 53 56 nfrex Could not format F/ d E. y e. _pred ( x , A , R ) ta' : No typesetting found for |- F/ d E. y e. _pred ( x , A , R ) ta' with typecode |-
58 57 nfab Could not format F/_ d { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- F/_ d { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
59 9 58 nfcxfr _ d H
60 59 nfcri d f H
61 nfv d z dom f
62 52 60 61 nf3an d ζ f H z dom f
63 20 62 nfxfr d ρ
64 63 nf5ri ρ d ρ
65 ax-5 y pred x A R d y pred x A R
66 28 nf5ri f C d f C
67 ax-5 dom f = y trCl y A R d dom f = y trCl y A R
68 64 65 66 67 bnj982 ρ y pred x A R f C dom f = y trCl y A R d ρ y pred x A R f C dom f = y trCl y A R
69 21 68 hbxfrbi σ d σ