Metamath Proof Explorer


Theorem bnj1448

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1448.1 B = d | d A x d pred x A R d
bnj1448.2 Y = x f pred x A R
bnj1448.3 C = f | d B f Fn d x d f x = G Y
bnj1448.4 τ f C dom f = x trCl x A R
bnj1448.5 D = x A | ¬ f τ
bnj1448.6 ψ R FrSe A D
bnj1448.7 χ ψ x D y D ¬ y R x
bnj1448.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1448.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1448.10 P = H
bnj1448.11 Z = x P pred x A R
bnj1448.12 Q = P x G Z
bnj1448.13 W = z Q pred z A R
Assertion bnj1448 Q z = G W f Q z = G W

Proof

Step Hyp Ref Expression
1 bnj1448.1 B = d | d A x d pred x A R d
2 bnj1448.2 Y = x f pred x A R
3 bnj1448.3 C = f | d B f Fn d x d f x = G Y
4 bnj1448.4 τ f C dom f = x trCl x A R
5 bnj1448.5 D = x A | ¬ f τ
6 bnj1448.6 ψ R FrSe A D
7 bnj1448.7 χ ψ x D y D ¬ y R x
8 bnj1448.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1448.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1448.10 P = H
11 bnj1448.11 Z = x P pred x A R
12 bnj1448.12 Q = P x G Z
13 bnj1448.13 W = z Q pred z A R
14 9 bnj1317 w H f w H
15 14 nfcii _ f H
16 15 nfuni _ f H
17 10 16 nfcxfr _ f P
18 nfcv _ f x
19 nfcv _ f G
20 nfcv _ f pred x A R
21 17 20 nfres _ f P pred x A R
22 18 21 nfop _ f x P pred x A R
23 11 22 nfcxfr _ f Z
24 19 23 nffv _ f G Z
25 18 24 nfop _ f x G Z
26 25 nfsn _ f x G Z
27 17 26 nfun _ f P x G Z
28 12 27 nfcxfr _ f Q
29 nfcv _ f z
30 28 29 nffv _ f Q z
31 nfcv _ f pred z A R
32 28 31 nfres _ f Q pred z A R
33 29 32 nfop _ f z Q pred z A R
34 13 33 nfcxfr _ f W
35 19 34 nffv _ f G W
36 30 35 nfeq f Q z = G W
37 36 nf5ri Q z = G W f Q z = G W