Metamath Proof Explorer


Theorem bnj1448

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1448.1 B=d|dAxdpredxARd
bnj1448.2 Y=xfpredxAR
bnj1448.3 C=f|dBfFndxdfx=GY
bnj1448.4 τfCdomf=xtrClxAR
bnj1448.5 D=xA|¬fτ
bnj1448.6 ψRFrSeAD
bnj1448.7 χψxDyD¬yRx
bnj1448.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1448.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1448.10 P=H
bnj1448.11 Z=xPpredxAR
bnj1448.12 Q=PxGZ
bnj1448.13 W=zQpredzAR
Assertion bnj1448 Qz=GWfQz=GW

Proof

Step Hyp Ref Expression
1 bnj1448.1 B=d|dAxdpredxARd
2 bnj1448.2 Y=xfpredxAR
3 bnj1448.3 C=f|dBfFndxdfx=GY
4 bnj1448.4 τfCdomf=xtrClxAR
5 bnj1448.5 D=xA|¬fτ
6 bnj1448.6 ψRFrSeAD
7 bnj1448.7 χψxDyD¬yRx
8 bnj1448.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1448.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1448.10 P=H
11 bnj1448.11 Z=xPpredxAR
12 bnj1448.12 Q=PxGZ
13 bnj1448.13 W=zQpredzAR
14 9 bnj1317 wHfwH
15 14 nfcii _fH
16 15 nfuni _fH
17 10 16 nfcxfr _fP
18 nfcv _fx
19 nfcv _fG
20 nfcv _fpredxAR
21 17 20 nfres _fPpredxAR
22 18 21 nfop _fxPpredxAR
23 11 22 nfcxfr _fZ
24 19 23 nffv _fGZ
25 18 24 nfop _fxGZ
26 25 nfsn _fxGZ
27 17 26 nfun _fPxGZ
28 12 27 nfcxfr _fQ
29 nfcv _fz
30 28 29 nffv _fQz
31 nfcv _fpredzAR
32 28 31 nfres _fQpredzAR
33 29 32 nfop _fzQpredzAR
34 13 33 nfcxfr _fW
35 19 34 nffv _fGW
36 30 35 nfeq fQz=GW
37 36 nf5ri Qz=GWfQz=GW