Metamath Proof Explorer


Theorem bnj1449

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1449.1 B = d | d A x d pred x A R d
bnj1449.2 Y = x f pred x A R
bnj1449.3 C = f | d B f Fn d x d f x = G Y
bnj1449.4 τ f C dom f = x trCl x A R
bnj1449.5 D = x A | ¬ f τ
bnj1449.6 ψ R FrSe A D
bnj1449.7 χ ψ x D y D ¬ y R x
bnj1449.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1449.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1449.10 P = H
bnj1449.11 Z = x P pred x A R
bnj1449.12 Q = P x G Z
bnj1449.13 W = z Q pred z A R
bnj1449.14 E = x trCl x A R
bnj1449.15 χ P Fn trCl x A R
bnj1449.16 χ Q Fn x trCl x A R
bnj1449.17 θ χ z E
bnj1449.18 η θ z x
bnj1449.19 ζ θ z trCl x A R
Assertion bnj1449 ζ f ζ

Proof

Step Hyp Ref Expression
1 bnj1449.1 B = d | d A x d pred x A R d
2 bnj1449.2 Y = x f pred x A R
3 bnj1449.3 C = f | d B f Fn d x d f x = G Y
4 bnj1449.4 τ f C dom f = x trCl x A R
5 bnj1449.5 D = x A | ¬ f τ
6 bnj1449.6 ψ R FrSe A D
7 bnj1449.7 χ ψ x D y D ¬ y R x
8 bnj1449.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1449.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1449.10 P = H
11 bnj1449.11 Z = x P pred x A R
12 bnj1449.12 Q = P x G Z
13 bnj1449.13 W = z Q pred z A R
14 bnj1449.14 E = x trCl x A R
15 bnj1449.15 χ P Fn trCl x A R
16 bnj1449.16 χ Q Fn x trCl x A R
17 bnj1449.17 θ χ z E
18 bnj1449.18 η θ z x
19 bnj1449.19 ζ θ z trCl x A R
20 nfv f R FrSe A
21 nfe1 f f τ
22 21 nfn f ¬ f τ
23 nfcv _ f A
24 22 23 nfrabw _ f x A | ¬ f τ
25 5 24 nfcxfr _ f D
26 nfcv _ f
27 25 26 nfne f D
28 20 27 nfan f R FrSe A D
29 6 28 nfxfr f ψ
30 25 nfcri f x D
31 nfv f ¬ y R x
32 25 31 nfralw f y D ¬ y R x
33 29 30 32 nf3an f ψ x D y D ¬ y R x
34 7 33 nfxfr f χ
35 nfv f z E
36 34 35 nfan f χ z E
37 17 36 nfxfr f θ
38 nfv f z trCl x A R
39 37 38 nfan f θ z trCl x A R
40 19 39 nfxfr f ζ
41 40 nf5ri ζ f ζ