Metamath Proof Explorer


Theorem bnj1450

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1450.1 B = d | d A x d pred x A R d
bnj1450.2 Y = x f pred x A R
bnj1450.3 C = f | d B f Fn d x d f x = G Y
bnj1450.4 τ f C dom f = x trCl x A R
bnj1450.5 D = x A | ¬ f τ
bnj1450.6 ψ R FrSe A D
bnj1450.7 χ ψ x D y D ¬ y R x
bnj1450.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1450.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1450.10 P = H
bnj1450.11 Z = x P pred x A R
bnj1450.12 Q = P x G Z
bnj1450.13 W = z Q pred z A R
bnj1450.14 E = x trCl x A R
bnj1450.15 χ P Fn trCl x A R
bnj1450.16 χ Q Fn x trCl x A R
bnj1450.17 θ χ z E
bnj1450.18 η θ z x
bnj1450.19 ζ θ z trCl x A R
bnj1450.20 ρ ζ f H z dom f
bnj1450.21 σ ρ y pred x A R f C dom f = y trCl y A R
bnj1450.22 φ σ d B f Fn d x d f x = G Y
bnj1450.23 X = z f pred z A R
Assertion bnj1450 ζ Q z = G W

Proof

Step Hyp Ref Expression
1 bnj1450.1 B = d | d A x d pred x A R d
2 bnj1450.2 Y = x f pred x A R
3 bnj1450.3 C = f | d B f Fn d x d f x = G Y
4 bnj1450.4 τ f C dom f = x trCl x A R
5 bnj1450.5 D = x A | ¬ f τ
6 bnj1450.6 ψ R FrSe A D
7 bnj1450.7 χ ψ x D y D ¬ y R x
8 bnj1450.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1450.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1450.10 P = H
11 bnj1450.11 Z = x P pred x A R
12 bnj1450.12 Q = P x G Z
13 bnj1450.13 W = z Q pred z A R
14 bnj1450.14 E = x trCl x A R
15 bnj1450.15 χ P Fn trCl x A R
16 bnj1450.16 χ Q Fn x trCl x A R
17 bnj1450.17 θ χ z E
18 bnj1450.18 η θ z x
19 bnj1450.19 ζ θ z trCl x A R
20 bnj1450.20 ρ ζ f H z dom f
21 bnj1450.21 σ ρ y pred x A R f C dom f = y trCl y A R
22 bnj1450.22 φ σ d B f Fn d x d f x = G Y
23 bnj1450.23 X = z f pred z A R
24 19 simprbi ζ z trCl x A R
25 15 fndmd χ dom P = trCl x A R
26 17 25 bnj832 θ dom P = trCl x A R
27 19 26 bnj832 ζ dom P = trCl x A R
28 24 27 eleqtrrd ζ z dom P
29 10 dmeqi dom P = dom H
30 28 29 eleqtrdi ζ z dom H
31 9 bnj1317 w H f w H
32 31 bnj1400 dom H = f H dom f
33 30 32 eleqtrdi ζ z f H dom f
34 33 bnj1405 ζ f H z dom f
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 bnj1449 ζ f ζ
36 34 20 35 bnj1521 ζ f ρ
37 9 bnj1436 Could not format ( f e. H -> E. y e. _pred ( x , A , R ) ta' ) : No typesetting found for |- ( f e. H -> E. y e. _pred ( x , A , R ) ta' ) with typecode |-
38 20 37 bnj836 Could not format ( rh -> E. y e. _pred ( x , A , R ) ta' ) : No typesetting found for |- ( rh -> E. y e. _pred ( x , A , R ) ta' ) with typecode |-
39 1 2 3 4 8 bnj1373 Could not format ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) : No typesetting found for |- ( ta' <-> ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) with typecode |-
40 39 rexbii Could not format ( E. y e. _pred ( x , A , R ) ta' <-> E. y e. _pred ( x , A , R ) ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) : No typesetting found for |- ( E. y e. _pred ( x , A , R ) ta' <-> E. y e. _pred ( x , A , R ) ( f e. C /\ dom f = ( { y } u. _trCl ( y , A , R ) ) ) ) with typecode |-
41 38 40 sylib ρ y pred x A R f C dom f = y trCl y A R
42 41 bnj1196 ρ y y pred x A R f C dom f = y trCl y A R
43 3anass y pred x A R f C dom f = y trCl y A R y pred x A R f C dom f = y trCl y A R
44 42 43 bnj1198 ρ y y pred x A R f C dom f = y trCl y A R
45 bnj252 ρ y pred x A R f C dom f = y trCl y A R ρ y pred x A R f C dom f = y trCl y A R
46 21 45 bitri σ ρ y pred x A R f C dom f = y trCl y A R
47 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 bnj1444 ρ y ρ
48 44 46 47 bnj1340 ρ y σ
49 3 bnj1436 f C d B f Fn d x d f x = G Y
50 21 49 bnj771 σ d B f Fn d x d f x = G Y
51 50 bnj1196 σ d d B f Fn d x d f x = G Y
52 3anass d B f Fn d x d f x = G Y d B f Fn d x d f x = G Y
53 51 52 bnj1198 σ d d B f Fn d x d f x = G Y
54 bnj252 σ d B f Fn d x d f x = G Y σ d B f Fn d x d f x = G Y
55 22 54 bitri φ σ d B f Fn d x d f x = G Y
56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 bnj1445 σ d σ
57 53 55 56 bnj1340 σ d φ
58 fveq2 x = z f x = f z
59 id x = z x = z
60 bnj602 x = z pred x A R = pred z A R
61 60 reseq2d x = z f pred x A R = f pred z A R
62 59 61 opeq12d x = z x f pred x A R = z f pred z A R
63 62 2 23 3eqtr4g x = z Y = X
64 63 fveq2d x = z G Y = G X
65 58 64 eqeq12d x = z f x = G Y f z = G X
66 22 bnj1254 φ x d f x = G Y
67 20 simp3bi ρ z dom f
68 21 67 bnj769 σ z dom f
69 22 68 bnj769 φ z dom f
70 fndm f Fn d dom f = d
71 22 70 bnj771 φ dom f = d
72 69 71 eleqtrd φ z d
73 65 66 72 rspcdva φ f z = G X
74 16 fnfund χ Fun Q
75 17 74 bnj832 θ Fun Q
76 19 75 bnj832 ζ Fun Q
77 20 76 bnj835 ρ Fun Q
78 21 77 bnj769 σ Fun Q
79 22 78 bnj769 φ Fun Q
80 20 simp2bi ρ f H
81 21 80 bnj769 σ f H
82 22 81 bnj769 φ f H
83 elssuni f H f H
84 83 10 sseqtrrdi f H f P
85 ssun3 f P f P x G Z
86 85 12 sseqtrrdi f P f Q
87 82 84 86 3syl φ f Q
88 79 87 69 bnj1502 φ Q z = f z
89 60 sseq1d x = z pred x A R d pred z A R d
90 1 bnj1517 d B x d pred x A R d
91 22 90 bnj770 φ x d pred x A R d
92 89 91 72 rspcdva φ pred z A R d
93 92 71 sseqtrrd φ pred z A R dom f
94 79 87 93 bnj1503 φ Q pred z A R = f pred z A R
95 94 opeq2d φ z Q pred z A R = z f pred z A R
96 95 13 23 3eqtr4g φ W = X
97 96 fveq2d φ G W = G X
98 73 88 97 3eqtr4d φ Q z = G W
99 57 98 bnj593 σ d Q z = G W
100 1 2 3 4 5 6 7 8 9 10 11 12 13 bnj1446 Q z = G W d Q z = G W
101 99 100 bnj1397 σ Q z = G W
102 48 101 bnj593 ρ y Q z = G W
103 1 2 3 4 5 6 7 8 9 10 11 12 13 bnj1447 Q z = G W y Q z = G W
104 102 103 bnj1397 ρ Q z = G W
105 36 104 bnj593 ζ f Q z = G W
106 1 2 3 4 5 6 7 8 9 10 11 12 13 bnj1448 Q z = G W f Q z = G W
107 105 106 bnj1397 ζ Q z = G W