Metamath Proof Explorer


Theorem bnj1452

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1452.1 B = d | d A x d pred x A R d
bnj1452.2 Y = x f pred x A R
bnj1452.3 C = f | d B f Fn d x d f x = G Y
bnj1452.4 τ f C dom f = x trCl x A R
bnj1452.5 D = x A | ¬ f τ
bnj1452.6 ψ R FrSe A D
bnj1452.7 χ ψ x D y D ¬ y R x
bnj1452.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1452.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1452.10 P = H
bnj1452.11 Z = x P pred x A R
bnj1452.12 Q = P x G Z
bnj1452.13 W = z Q pred z A R
bnj1452.14 E = x trCl x A R
Assertion bnj1452 χ E B

Proof

Step Hyp Ref Expression
1 bnj1452.1 B = d | d A x d pred x A R d
2 bnj1452.2 Y = x f pred x A R
3 bnj1452.3 C = f | d B f Fn d x d f x = G Y
4 bnj1452.4 τ f C dom f = x trCl x A R
5 bnj1452.5 D = x A | ¬ f τ
6 bnj1452.6 ψ R FrSe A D
7 bnj1452.7 χ ψ x D y D ¬ y R x
8 bnj1452.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1452.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1452.10 P = H
11 bnj1452.11 Z = x P pred x A R
12 bnj1452.12 Q = P x G Z
13 bnj1452.13 W = z Q pred z A R
14 bnj1452.14 E = x trCl x A R
15 5 7 bnj1212 χ x A
16 15 snssd χ x A
17 bnj1147 trCl x A R A
18 17 a1i χ trCl x A R A
19 16 18 unssd χ x trCl x A R A
20 14 19 eqsstrid χ E A
21 elsni z x z = x
22 21 adantl χ z E z x z = x
23 bnj602 z = x pred z A R = pred x A R
24 22 23 syl χ z E z x pred z A R = pred x A R
25 6 simplbi ψ R FrSe A
26 7 25 bnj835 χ R FrSe A
27 bnj906 R FrSe A x A pred x A R trCl x A R
28 26 15 27 syl2anc χ pred x A R trCl x A R
29 28 ad2antrr χ z E z x pred x A R trCl x A R
30 24 29 eqsstrd χ z E z x pred z A R trCl x A R
31 ssun4 pred z A R trCl x A R pred z A R x trCl x A R
32 31 14 sseqtrrdi pred z A R trCl x A R pred z A R E
33 30 32 syl χ z E z x pred z A R E
34 26 ad2antrr χ z E z trCl x A R R FrSe A
35 simpr χ z E z trCl x A R z trCl x A R
36 17 35 bnj1213 χ z E z trCl x A R z A
37 bnj906 R FrSe A z A pred z A R trCl z A R
38 34 36 37 syl2anc χ z E z trCl x A R pred z A R trCl z A R
39 15 ad2antrr χ z E z trCl x A R x A
40 bnj1125 R FrSe A x A z trCl x A R trCl z A R trCl x A R
41 34 39 35 40 syl3anc χ z E z trCl x A R trCl z A R trCl x A R
42 38 41 sstrd χ z E z trCl x A R pred z A R trCl x A R
43 42 32 syl χ z E z trCl x A R pred z A R E
44 14 bnj1424 z E z x z trCl x A R
45 44 adantl χ z E z x z trCl x A R
46 33 43 45 mpjaodan χ z E pred z A R E
47 46 ralrimiva χ z E pred z A R E
48 snex x V
49 48 a1i χ x V
50 bnj893 R FrSe A x A trCl x A R V
51 26 15 50 syl2anc χ trCl x A R V
52 49 51 bnj1149 χ x trCl x A R V
53 14 52 eqeltrid χ E V
54 1 bnj1454 E V E B [˙E / d]˙ d A x d pred x A R d
55 53 54 syl χ E B [˙E / d]˙ d A x d pred x A R d
56 bnj602 x = z pred x A R = pred z A R
57 56 sseq1d x = z pred x A R d pred z A R d
58 57 cbvralvw x d pred x A R d z d pred z A R d
59 58 anbi2i d A x d pred x A R d d A z d pred z A R d
60 59 sbcbii [˙E / d]˙ d A x d pred x A R d [˙E / d]˙ d A z d pred z A R d
61 55 60 bitrdi χ E B [˙E / d]˙ d A z d pred z A R d
62 sseq1 d = E d A E A
63 sseq2 d = E pred z A R d pred z A R E
64 63 raleqbi1dv d = E z d pred z A R d z E pred z A R E
65 62 64 anbi12d d = E d A z d pred z A R d E A z E pred z A R E
66 65 sbcieg E V [˙E / d]˙ d A z d pred z A R d E A z E pred z A R E
67 53 66 syl χ [˙E / d]˙ d A z d pred z A R d E A z E pred z A R E
68 61 67 bitrd χ E B E A z E pred z A R E
69 20 47 68 mpbir2and χ E B