Metamath Proof Explorer


Theorem bnj1454

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1454.1 A = x | φ
Assertion bnj1454 B V B A [˙B / x]˙ φ

Proof

Step Hyp Ref Expression
1 bnj1454.1 A = x | φ
2 1 eleq2i B A B x | φ
3 df-sbc [˙B / x]˙ φ B x | φ
4 3 a1i B V [˙B / x]˙ φ B x | φ
5 2 4 bitr4id B V B A [˙B / x]˙ φ