Metamath Proof Explorer


Theorem bnj1464

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1464.1 ψ x ψ
bnj1464.2 x = A φ ψ
Assertion bnj1464 A V [˙A / x]˙ φ ψ

Proof

Step Hyp Ref Expression
1 bnj1464.1 ψ x ψ
2 bnj1464.2 x = A φ ψ
3 1 nf5i x ψ
4 3 2 sbciegf A V [˙A / x]˙ φ ψ