Metamath Proof Explorer


Theorem bnj1465

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1465.1 x = A φ ψ
bnj1465.2 ψ x ψ
bnj1465.3 χ ψ
Assertion bnj1465 χ A V x φ

Proof

Step Hyp Ref Expression
1 bnj1465.1 x = A φ ψ
2 bnj1465.2 ψ x ψ
3 bnj1465.3 χ ψ
4 3 adantr χ A V ψ
5 2 1 bnj1464 A V [˙A / x]˙ φ ψ
6 5 adantl χ A V [˙A / x]˙ φ ψ
7 4 6 mpbird χ A V [˙A / x]˙ φ
8 7 spesbcd χ A V x φ