Metamath Proof Explorer


Theorem bnj1466

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1466.1 B = d | d A x d pred x A R d
bnj1466.2 Y = x f pred x A R
bnj1466.3 C = f | d B f Fn d x d f x = G Y
bnj1466.4 τ f C dom f = x trCl x A R
bnj1466.5 D = x A | ¬ f τ
bnj1466.6 ψ R FrSe A D
bnj1466.7 χ ψ x D y D ¬ y R x
bnj1466.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1466.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1466.10 P = H
bnj1466.11 Z = x P pred x A R
bnj1466.12 Q = P x G Z
Assertion bnj1466 w Q f w Q

Proof

Step Hyp Ref Expression
1 bnj1466.1 B = d | d A x d pred x A R d
2 bnj1466.2 Y = x f pred x A R
3 bnj1466.3 C = f | d B f Fn d x d f x = G Y
4 bnj1466.4 τ f C dom f = x trCl x A R
5 bnj1466.5 D = x A | ¬ f τ
6 bnj1466.6 ψ R FrSe A D
7 bnj1466.7 χ ψ x D y D ¬ y R x
8 bnj1466.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1466.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1466.10 P = H
11 bnj1466.11 Z = x P pred x A R
12 bnj1466.12 Q = P x G Z
13 9 bnj1317 w H f w H
14 13 nfcii _ f H
15 14 nfuni _ f H
16 10 15 nfcxfr _ f P
17 nfcv _ f x
18 nfcv _ f G
19 nfcv _ f pred x A R
20 16 19 nfres _ f P pred x A R
21 17 20 nfop _ f x P pred x A R
22 11 21 nfcxfr _ f Z
23 18 22 nffv _ f G Z
24 17 23 nfop _ f x G Z
25 24 nfsn _ f x G Z
26 16 25 nfun _ f P x G Z
27 12 26 nfcxfr _ f Q
28 27 nfcrii w Q f w Q