Metamath Proof Explorer


Theorem bnj1467

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1467.1 B = d | d A x d pred x A R d
bnj1467.2 Y = x f pred x A R
bnj1467.3 C = f | d B f Fn d x d f x = G Y
bnj1467.4 τ f C dom f = x trCl x A R
bnj1467.5 D = x A | ¬ f τ
bnj1467.6 ψ R FrSe A D
bnj1467.7 χ ψ x D y D ¬ y R x
bnj1467.8 No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
bnj1467.9 No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
bnj1467.10 P = H
bnj1467.11 Z = x P pred x A R
bnj1467.12 Q = P x G Z
Assertion bnj1467 w Q d w Q

Proof

Step Hyp Ref Expression
1 bnj1467.1 B = d | d A x d pred x A R d
2 bnj1467.2 Y = x f pred x A R
3 bnj1467.3 C = f | d B f Fn d x d f x = G Y
4 bnj1467.4 τ f C dom f = x trCl x A R
5 bnj1467.5 D = x A | ¬ f τ
6 bnj1467.6 ψ R FrSe A D
7 bnj1467.7 χ ψ x D y D ¬ y R x
8 bnj1467.8 Could not format ( ta' <-> [. y / x ]. ta ) : No typesetting found for |- ( ta' <-> [. y / x ]. ta ) with typecode |-
9 bnj1467.9 Could not format H = { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- H = { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
10 bnj1467.10 P = H
11 bnj1467.11 Z = x P pred x A R
12 bnj1467.12 Q = P x G Z
13 nfcv _ d pred x A R
14 nfcv _ d y
15 nfre1 d d B f Fn d x d f x = G Y
16 15 nfab _ d f | d B f Fn d x d f x = G Y
17 3 16 nfcxfr _ d C
18 17 nfcri d f C
19 nfv d dom f = x trCl x A R
20 18 19 nfan d f C dom f = x trCl x A R
21 4 20 nfxfr d τ
22 14 21 nfsbcw d [˙y / x]˙ τ
23 8 22 nfxfr Could not format F/ d ta' : No typesetting found for |- F/ d ta' with typecode |-
24 13 23 nfrex Could not format F/ d E. y e. _pred ( x , A , R ) ta' : No typesetting found for |- F/ d E. y e. _pred ( x , A , R ) ta' with typecode |-
25 24 nfab Could not format F/_ d { f | E. y e. _pred ( x , A , R ) ta' } : No typesetting found for |- F/_ d { f | E. y e. _pred ( x , A , R ) ta' } with typecode |-
26 9 25 nfcxfr _ d H
27 26 nfuni _ d H
28 10 27 nfcxfr _ d P
29 nfcv _ d x
30 nfcv _ d G
31 28 13 nfres _ d P pred x A R
32 29 31 nfop _ d x P pred x A R
33 11 32 nfcxfr _ d Z
34 30 33 nffv _ d G Z
35 29 34 nfop _ d x G Z
36 35 nfsn _ d x G Z
37 28 36 nfun _ d P x G Z
38 12 37 nfcxfr _ d Q
39 38 nfcrii w Q d w Q