Metamath Proof Explorer


Theorem bnj1476

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1476.1 D = x A | ¬ φ
bnj1476.2 ψ D =
Assertion bnj1476 ψ x A φ

Proof

Step Hyp Ref Expression
1 bnj1476.1 D = x A | ¬ φ
2 bnj1476.2 ψ D =
3 nfrab1 _ x x A | ¬ φ
4 1 3 nfcxfr _ x D
5 4 eq0f D = x ¬ x D
6 2 5 sylib ψ x ¬ x D
7 1 rabeq2i x D x A ¬ φ
8 7 notbii ¬ x D ¬ x A ¬ φ
9 iman x A φ ¬ x A ¬ φ
10 8 9 sylbb2 ¬ x D x A φ
11 6 10 sylg ψ x x A φ
12 11 bnj1142 ψ x A φ