Metamath Proof Explorer


Theorem bnj1493

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1493.1 B = d | d A x d pred x A R d
bnj1493.2 Y = x f pred x A R
bnj1493.3 C = f | d B f Fn d x d f x = G Y
Assertion bnj1493 R FrSe A x A f C dom f = x trCl x A R

Proof

Step Hyp Ref Expression
1 bnj1493.1 B = d | d A x d pred x A R d
2 bnj1493.2 Y = x f pred x A R
3 bnj1493.3 C = f | d B f Fn d x d f x = G Y
4 biid f C dom f = x trCl x A R f C dom f = x trCl x A R
5 eqid x A | ¬ f f C dom f = x trCl x A R = x A | ¬ f f C dom f = x trCl x A R
6 biid R FrSe A x A | ¬ f f C dom f = x trCl x A R R FrSe A x A | ¬ f f C dom f = x trCl x A R
7 biid R FrSe A x A | ¬ f f C dom f = x trCl x A R x x A | ¬ f f C dom f = x trCl x A R y x A | ¬ f f C dom f = x trCl x A R ¬ y R x R FrSe A x A | ¬ f f C dom f = x trCl x A R x x A | ¬ f f C dom f = x trCl x A R y x A | ¬ f f C dom f = x trCl x A R ¬ y R x
8 biid [˙y / x]˙ f C dom f = x trCl x A R [˙y / x]˙ f C dom f = x trCl x A R
9 eqid f | y pred x A R [˙y / x]˙ f C dom f = x trCl x A R = f | y pred x A R [˙y / x]˙ f C dom f = x trCl x A R
10 eqid f | y pred x A R [˙y / x]˙ f C dom f = x trCl x A R = f | y pred x A R [˙y / x]˙ f C dom f = x trCl x A R
11 eqid x f | y pred x A R [˙y / x]˙ f C dom f = x trCl x A R pred x A R = x f | y pred x A R [˙y / x]˙ f C dom f = x trCl x A R pred x A R
12 eqid f | y pred x A R [˙y / x]˙ f C dom f = x trCl x A R x G x f | y pred x A R [˙y / x]˙ f C dom f = x trCl x A R pred x A R = f | y pred x A R [˙y / x]˙ f C dom f = x trCl x A R x G x f | y pred x A R [˙y / x]˙ f C dom f = x trCl x A R pred x A R
13 eqid z f | y pred x A R [˙y / x]˙ f C dom f = x trCl x A R x G x f | y pred x A R [˙y / x]˙ f C dom f = x trCl x A R pred x A R pred z A R = z f | y pred x A R [˙y / x]˙ f C dom f = x trCl x A R x G x f | y pred x A R [˙y / x]˙ f C dom f = x trCl x A R pred x A R pred z A R
14 eqid x trCl x A R = x trCl x A R
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 bnj1312 R FrSe A x A f C dom f = x trCl x A R