Metamath Proof Explorer


Theorem bnj1502

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1502.1 φ Fun F
bnj1502.2 φ G F
bnj1502.3 φ A dom G
Assertion bnj1502 φ F A = G A

Proof

Step Hyp Ref Expression
1 bnj1502.1 φ Fun F
2 bnj1502.2 φ G F
3 bnj1502.3 φ A dom G
4 funssfv Fun F G F A dom G F A = G A
5 1 2 3 4 syl3anc φ F A = G A