Metamath Proof Explorer


Theorem bnj1521

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1521.1 χ x B φ
bnj1521.2 θ χ x B φ
bnj1521.3 χ x χ
Assertion bnj1521 χ x θ

Proof

Step Hyp Ref Expression
1 bnj1521.1 χ x B φ
2 bnj1521.2 θ χ x B φ
3 bnj1521.3 χ x χ
4 1 bnj1196 χ x x B φ
5 4 2 3 bnj1345 χ x θ