Metamath Proof Explorer


Theorem bnj1525

Description: Technical lemma for bnj1522 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1525.1 B = d | d A x d pred x A R d
bnj1525.2 Y = x f pred x A R
bnj1525.3 C = f | d B f Fn d x d f x = G Y
bnj1525.4 F = C
bnj1525.5 φ R FrSe A H Fn A x A H x = G x H pred x A R
bnj1525.6 ψ φ F H
Assertion bnj1525 ψ x ψ

Proof

Step Hyp Ref Expression
1 bnj1525.1 B = d | d A x d pred x A R d
2 bnj1525.2 Y = x f pred x A R
3 bnj1525.3 C = f | d B f Fn d x d f x = G Y
4 bnj1525.4 F = C
5 bnj1525.5 φ R FrSe A H Fn A x A H x = G x H pred x A R
6 bnj1525.6 ψ φ F H
7 nfv x R FrSe A
8 nfv x H Fn A
9 nfra1 x x A H x = G x H pred x A R
10 7 8 9 nf3an x R FrSe A H Fn A x A H x = G x H pred x A R
11 5 10 nfxfr x φ
12 1 bnj1309 w B x w B
13 3 12 bnj1307 w C x w C
14 13 nfcii _ x C
15 14 nfuni _ x C
16 4 15 nfcxfr _ x F
17 nfcv _ x H
18 16 17 nfne x F H
19 11 18 nfan x φ F H
20 6 19 nfxfr x ψ
21 20 nf5ri ψ x ψ