Metamath Proof Explorer


Theorem bnj1533

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1533.1 θ z B ¬ z D
bnj1533.2 B A
bnj1533.3 D = z A | C E
Assertion bnj1533 θ z B C = E

Proof

Step Hyp Ref Expression
1 bnj1533.1 θ z B ¬ z D
2 bnj1533.2 B A
3 bnj1533.3 D = z A | C E
4 1 bnj1211 θ z z B ¬ z D
5 3 rabeq2i z D z A C E
6 5 notbii ¬ z D ¬ z A C E
7 imnan z A ¬ C E ¬ z A C E
8 nne ¬ C E C = E
9 8 imbi2i z A ¬ C E z A C = E
10 6 7 9 3bitr2i ¬ z D z A C = E
11 10 imbi2i z B ¬ z D z B z A C = E
12 2 sseli z B z A
13 12 imim1i z A C = E z B C = E
14 ax-1 z A C = E z B z A C = E
15 14 anim1i z A C = E z B z B z A C = E z B
16 simpr z B z A C = E z B z B
17 simpl z B z A C = E z B z B z A C = E
18 16 17 mpd z B z A C = E z B z A C = E
19 18 16 jca z B z A C = E z B z A C = E z B
20 15 19 impbii z A C = E z B z B z A C = E z B
21 20 imbi1i z A C = E z B C = E z B z A C = E z B C = E
22 impexp z A C = E z B C = E z A C = E z B C = E
23 impexp z B z A C = E z B C = E z B z A C = E z B C = E
24 21 22 23 3bitr3i z A C = E z B C = E z B z A C = E z B C = E
25 13 24 mpbi z B z A C = E z B C = E
26 11 25 sylbi z B ¬ z D z B C = E
27 4 26 sylg θ z z B C = E
28 27 bnj1142 θ z B C = E