Metamath Proof Explorer


Theorem bnj1541

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1541.1 φ ψ A B
bnj1541.2 ¬ φ
Assertion bnj1541 ψ A = B

Proof

Step Hyp Ref Expression
1 bnj1541.1 φ ψ A B
2 bnj1541.2 ¬ φ
3 2 1 mtbi ¬ ψ A B
4 3 imnani ψ ¬ A B
5 nne ¬ A B A = B
6 4 5 sylib ψ A = B