Metamath Proof Explorer


Theorem bnj158

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj158.1 D = ω
Assertion bnj158 m D p ω m = suc p

Proof

Step Hyp Ref Expression
1 bnj158.1 D = ω
2 1 eleq2i m D m ω
3 eldifsn m ω m ω m
4 2 3 bitri m D m ω m
5 nnsuc m ω m p ω m = suc p
6 4 5 sylbi m D p ω m = suc p