Metamath Proof Explorer


Theorem bnj18eq1

Description: Equality theorem for transitive closure. (Contributed by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)

Ref Expression
Assertion bnj18eq1 X = Y trCl X A R = trCl Y A R

Proof

Step Hyp Ref Expression
1 bnj602 X = Y pred X A R = pred Y A R
2 1 eqeq2d X = Y f = pred X A R f = pred Y A R
3 2 3anbi2d X = Y f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R
4 3 rexbidv X = Y n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R
5 4 abbidv X = Y f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R = f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R
6 5 eleq2d X = Y f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R f f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R
7 6 anbi1d X = Y f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R x i dom f f i f f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R x i dom f f i
8 7 rexbidv2 X = Y f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R x i dom f f i f f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R x i dom f f i
9 8 abbidv X = Y x | f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R x i dom f f i = x | f f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R x i dom f f i
10 df-iun f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i = x | f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R x i dom f f i
11 df-iun f f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R i dom f f i = x | f f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R x i dom f f i
12 9 10 11 3eqtr4g X = Y f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i = f f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R i dom f f i
13 df-bnj18 trCl X A R = f f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R i dom f f i
14 df-bnj18 trCl Y A R = f f | n ω f Fn n f = pred Y A R i ω suc i n f suc i = y f i pred y A R i dom f f i
15 12 13 14 3eqtr4g X = Y trCl X A R = trCl Y A R