Metamath Proof Explorer


Theorem bnj206

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj206.1 No typesetting found for |- ( ph' <-> [. M / n ]. ph ) with typecode |-
bnj206.2 No typesetting found for |- ( ps' <-> [. M / n ]. ps ) with typecode |-
bnj206.3 No typesetting found for |- ( ch' <-> [. M / n ]. ch ) with typecode |-
bnj206.4 M V
Assertion bnj206 Could not format assertion : No typesetting found for |- ( [. M / n ]. ( ph /\ ps /\ ch ) <-> ( ph' /\ ps' /\ ch' ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj206.1 Could not format ( ph' <-> [. M / n ]. ph ) : No typesetting found for |- ( ph' <-> [. M / n ]. ph ) with typecode |-
2 bnj206.2 Could not format ( ps' <-> [. M / n ]. ps ) : No typesetting found for |- ( ps' <-> [. M / n ]. ps ) with typecode |-
3 bnj206.3 Could not format ( ch' <-> [. M / n ]. ch ) : No typesetting found for |- ( ch' <-> [. M / n ]. ch ) with typecode |-
4 bnj206.4 M V
5 sbc3an [˙M / n]˙ φ ψ χ [˙M / n]˙ φ [˙M / n]˙ ψ [˙M / n]˙ χ
6 1 bicomi Could not format ( [. M / n ]. ph <-> ph' ) : No typesetting found for |- ( [. M / n ]. ph <-> ph' ) with typecode |-
7 2 bicomi Could not format ( [. M / n ]. ps <-> ps' ) : No typesetting found for |- ( [. M / n ]. ps <-> ps' ) with typecode |-
8 3 bicomi Could not format ( [. M / n ]. ch <-> ch' ) : No typesetting found for |- ( [. M / n ]. ch <-> ch' ) with typecode |-
9 6 7 8 3anbi123i Could not format ( ( [. M / n ]. ph /\ [. M / n ]. ps /\ [. M / n ]. ch ) <-> ( ph' /\ ps' /\ ch' ) ) : No typesetting found for |- ( ( [. M / n ]. ph /\ [. M / n ]. ps /\ [. M / n ]. ch ) <-> ( ph' /\ ps' /\ ch' ) ) with typecode |-
10 5 9 bitri Could not format ( [. M / n ]. ( ph /\ ps /\ ch ) <-> ( ph' /\ ps' /\ ch' ) ) : No typesetting found for |- ( [. M / n ]. ( ph /\ ps /\ ch ) <-> ( ph' /\ ps' /\ ch' ) ) with typecode |-