Metamath Proof Explorer


Theorem bnj248

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj248 φ ψ χ θ φ ψ χ θ

Proof

Step Hyp Ref Expression
1 df-bnj17 φ ψ χ θ φ ψ χ θ
2 df-3an φ ψ χ φ ψ χ
3 2 anbi1i φ ψ χ θ φ ψ χ θ
4 1 3 bitri φ ψ χ θ φ ψ χ θ