Metamath Proof Explorer


Theorem bnj250

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj250 φ ψ χ θ φ ψ χ θ

Proof

Step Hyp Ref Expression
1 df-bnj17 φ ψ χ θ φ ψ χ θ
2 3anass φ ψ χ φ ψ χ
3 2 anbi1i φ ψ χ θ φ ψ χ θ
4 anass φ ψ χ θ φ ψ χ θ
5 1 3 4 3bitri φ ψ χ θ φ ψ χ θ