Metamath Proof Explorer


Theorem bnj251

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj251 φ ψ χ θ φ ψ χ θ

Proof

Step Hyp Ref Expression
1 bnj250 φ ψ χ θ φ ψ χ θ
2 anass ψ χ θ ψ χ θ
3 2 anbi2i φ ψ χ θ φ ψ χ θ
4 1 3 bitri φ ψ χ θ φ ψ χ θ