Metamath Proof Explorer


Theorem bnj253

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj253 φ ψ χ θ φ ψ χ θ

Proof

Step Hyp Ref Expression
1 bnj248 φ ψ χ θ φ ψ χ θ
2 df-3an φ ψ χ θ φ ψ χ θ
3 1 2 bitr4i φ ψ χ θ φ ψ χ θ