Metamath Proof Explorer


Theorem bnj255

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj255 φ ψ χ θ φ ψ χ θ

Proof

Step Hyp Ref Expression
1 bnj251 φ ψ χ θ φ ψ χ θ
2 3anass φ ψ χ θ φ ψ χ θ
3 1 2 bitr4i φ ψ χ θ φ ψ χ θ