Metamath Proof Explorer


Theorem bnj256

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj256 φ ψ χ θ φ ψ χ θ

Proof

Step Hyp Ref Expression
1 bnj248 φ ψ χ θ φ ψ χ θ
2 anass φ ψ χ θ φ ψ χ θ
3 1 2 bitri φ ψ χ θ φ ψ χ θ