Metamath Proof Explorer


Theorem bnj257

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj257 φ ψ χ θ φ ψ θ χ

Proof

Step Hyp Ref Expression
1 ancom χ θ θ χ
2 1 anbi2i φ ψ χ θ φ ψ θ χ
3 bnj256 φ ψ χ θ φ ψ χ θ
4 bnj256 φ ψ θ χ φ ψ θ χ
5 2 3 4 3bitr4i φ ψ χ θ φ ψ θ χ