Metamath Proof Explorer


Theorem bnj268

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj268 φ ψ χ θ φ χ ψ θ

Proof

Step Hyp Ref Expression
1 3ancomb φ ψ χ φ χ ψ
2 1 anbi1i φ ψ χ θ φ χ ψ θ
3 df-bnj17 φ ψ χ θ φ ψ χ θ
4 df-bnj17 φ χ ψ θ φ χ ψ θ
5 2 3 4 3bitr4i φ ψ χ θ φ χ ψ θ