Metamath Proof Explorer


Theorem bnj290

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj290 φ ψ χ θ φ χ θ ψ

Proof

Step Hyp Ref Expression
1 3anrot ψ χ θ χ θ ψ
2 1 anbi2i φ ψ χ θ φ χ θ ψ
3 bnj252 φ ψ χ θ φ ψ χ θ
4 bnj252 φ χ θ ψ φ χ θ ψ
5 2 3 4 3bitr4i φ ψ χ θ φ χ θ ψ