Metamath Proof Explorer


Theorem bnj290

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj290 φψχθφχθψ

Proof

Step Hyp Ref Expression
1 3anrot ψχθχθψ
2 1 anbi2i φψχθφχθψ
3 bnj252 φψχθφψχθ
4 bnj252 φχθψφχθψ
5 2 3 4 3bitr4i φψχθφχθψ