Metamath Proof Explorer


Theorem bnj291

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj291 φ ψ χ θ φ χ θ ψ

Proof

Step Hyp Ref Expression
1 bnj290 φ ψ χ θ φ χ θ ψ
2 df-bnj17 φ χ θ ψ φ χ θ ψ
3 1 2 bitri φ ψ χ θ φ χ θ ψ