Metamath Proof Explorer


Theorem bnj334

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Andrew Salmon, 14-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj334 φ ψ χ θ χ φ ψ θ

Proof

Step Hyp Ref Expression
1 bnj290 φ ψ χ θ φ χ θ ψ
2 bnj257 φ χ θ ψ φ χ ψ θ
3 bnj312 φ χ ψ θ χ φ ψ θ
4 1 2 3 3bitri φ ψ χ θ χ φ ψ θ