Metamath Proof Explorer


Theorem bnj345

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Andrew Salmon, 14-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj345 φ ψ χ θ θ φ ψ χ

Proof

Step Hyp Ref Expression
1 bnj334 φ ψ χ θ χ φ ψ θ
2 bnj250 χ φ ψ θ χ φ ψ θ
3 3anass χ φ ψ θ χ φ ψ θ
4 2 3 bitr4i χ φ ψ θ χ φ ψ θ
5 3anrev χ φ ψ θ θ φ ψ χ
6 bnj250 θ φ ψ χ θ φ ψ χ
7 3anass θ φ ψ χ θ φ ψ χ
8 6 7 bitr4i θ φ ψ χ θ φ ψ χ
9 5 8 bitr4i χ φ ψ θ θ φ ψ χ
10 1 4 9 3bitri φ ψ χ θ θ φ ψ χ